## Brownins A and B: Novel Rearranged Limonoids from *Harrisonia brownii*

Kazuo Koike, Katsuyoshi Mitsunaga, Kiyoshi Ishii and Taichi Ohmoto\*
School of Pharmaceutical sciences, Toho University, Miyama, Funabashi, Chiba 274, Japan

Yoshiyuki Kawakami, Megumi Ikemori and Tadashi Sato

Tsukuba Research Laboratories, Eisai Co., Ltd., Tokodai, Tsukuba, Ibaraki 300-26, Japan

(Received in Japan 21 December 1992)

Abstract: Two highly rearranged Immonoids of a novel skeletal type, brownins A (1) and B (2), have been isolated from the bark of *Harrisonia brownii* (Simaroubaceae) Their structures were determined by spectral data and X-ray diffraction analysis

Harrisonia brownii Juss is widely distributed in southeast Asia and its root is used in the treatment of dysentery and cholera.  $^{1,2}$  No chemical studies have been reported on H brownii, but H abysinica Oliv. and H perforata Merr endemic species widely used in African and southeast Asian tropical medicine, have been reported to contain seven limonoids  $^{3-8}$  and seven chromans  $^{4,9-13}$  In this paper, we reported the isolation and structural elucidation of the highly rearranged limonoids of a novel skeletal type, brownin A (1) and brwonin B (2), from H brownii Their structures were elucidated on the basis of spectral data and single crystal X-ray diffraction analysis

## RESULTS AND DISCUSSION

Both compounds were obtained from the chloroform extract of the bark and were purified by silica gel chromatography and recrystallization

The first compound, brownin A (1), was obtained as colorless prisms, [ $\alpha$ ]D -75 00 (pyridine) The molecular formula, C<sub>26</sub>H<sub>26</sub>O<sub>9</sub> was determined by high-resolution mass measurement (HRMS) of its molecular ion at m/z 482 1556 ( $\Delta$  -1 3 mmu of calcd) The IR spectrum of 1 indicated bands at 1785 (br) (lactone) and 1650 cm<sup>-1</sup> (olefine) and the UV absorptions at 250 and 255 nm were typical of a  $\beta$ -

2210 K Koike et al

substituted furan ring The  $^{1}$ H NMR spectrum (Table 1) showed resonances for four tertiary methyl groups ( $\delta$  0 97, 1 23, 1 65 and 1 86), a disubstituted double bond ( $\delta$  5 50 and 5 68) and a  $\beta$ -substituted furan ( $\delta$  6 56, 7 72 and 7 78) The molecular formula required 14 degrees of unsaturation DEPT spectrum confirmed the presence of three lactone carbons and eight sp<sup>2</sup> carbons (two singlets, five doublets and one triplet) It is thus evident that 1 possesses a heptacyclic skeleton containing a vinylmethylene and a furan ring The  $^{1}$ H and  $^{13}$ C NMR chemical shift assignments and cross-correlation observed in the 2D NMR experiments (HMQC and HMBC) are summarized in Table 1

A convenient starting point for the spectral analysis was the methine proton (H-17,  $\delta$  5 64) This showed long-range correlation ( ${}^{1}$ H- ${}^{1}$ H COSY) with H-21 ( $\delta$  7 78) and H-22 ( $\delta$  6 56) Long-range  ${}^{1}$ H- ${}^{13}$ C correlation (HMBC) was observed between H-17 and the quaternary carbon (C-13,  $\delta$  55.84) and the lactone carbonyl carbon (C-15,  $\delta$  166 56) The ring juncture methyl signal at H-18 ( $\delta$  0.97) showed  ${}^{3}J$  cross-peaks with the two oxygenated carbons at C-14 ( $\delta$  84 94) and C-17 ( $\delta$  77 76) and the olefinic carbon at C-12 ( $\delta$  133 33) The singlet methyl signal (H-30,  $\delta$  1 65) showed a  ${}^{2}J$  cross-peak with the ketalic carbon at C-8 ( $\delta$  110 22) On the other hand, the ring juncture methyl signal at H-19 ( $\delta$  1 23) showed  ${}^{3}J$  cross-peaks with the  $\gamma$ -lactone carbonyl carbon at C-5 ( $\delta$  173 20) and the spyro carbon bearing an oxygen atom at C-1 ( $\delta$  86 07) The bridgehead methine proton at H-1' showed  ${}^{2}J$  and  ${}^{3}J$  cross-peaks with C-1 as well as with the  $\gamma$ -lactone carbonyl carbon at C-3' ( $\delta$  173 54) and the quaternary oxygenated carbon at C-3 ( $\delta$  96 77), indicating that the  $\gamma$ -lactone carbonyl was adjacent to the carbon at C-2' ( $\delta$  36 01) and that there was ether linkage between C-1 and C-1' The methyl protons at H-28 ( $\delta$  1 86) of the isopropenyl group showed a  ${}^{3}J$  cross-peak at C-3, demonstrating that the isopropenyl group and C-3 were connected by the bond between the carbons at  $\delta$  96 77 and 140 70 (C-4) One of the nonequivalent methylene protons at H-2 $\beta$  ( $\delta$  2 49) showed long-range correlations with C-1 and the quaternary carbon at

C-14 ( $\delta$  84 94) On the other hand, long-range correlations of the other nonequivalent methylene proton at H-2 $\alpha$  ( $\delta$  2.94) were observed with C-1 and C-3 These observations indicated that the spyro carbon at the C-1 of furanofuranone moiety connected with C-10 and C-14 Finally, the remaining ether linkage must be from C-8 to C-14 These data clearly demonstrated that the novel limonoid brownin A was compound 1 The relative configuration of 1 was determined by NOE studies (Figure 1) In order to confirm unambiguously the structure and to establish the relative stereochemisty of all nine chiral C atoms, a single crystal X-ray diffraction analysis on 1 was performed. A computer-generated perspective drawing of the final X-ray model of brownin A (1) is given in Figure 2 or its antipode

 $\begin{array}{ccc} \text{Table 1} & ^{13}\text{C and } ^{1}\text{H Chemical Shift Assignments and Long-range Correlation} \\ \text{Responses of Brownin A (1) in Dimethylsulfoxide-$d6$ at 350K} \end{array}$ 

| Assignment | δC              | DEPT                               | δн             | mult     | ( <i>J</i> , Hz) | Long-range connectivity in HMBC |
|------------|-----------------|------------------------------------|----------------|----------|------------------|---------------------------------|
| 1          | 86 07           | C                                  |                |          |                  | Η-2α,β, Η-19, Η-1'              |
| 2          | 41 32           | $CH_2$                             | 2 96 α         | d        | (15 4)           | H-1'                            |
|            |                 |                                    | 2 49 β         | d        | (15 4)           |                                 |
| 3          | 96 77           | С                                  |                | _        | (,               | Н-2β, Н-28, Н-1', Н-2'β         |
| 4          | 140 70          | С                                  |                |          |                  | H-2α, H-28, H-1'                |
| 5          | 173 20          | C<br>C                             |                |          |                  | H-19                            |
| 5<br>8     | 110 22          |                                    |                |          |                  | H-9, H-11, H-30                 |
| 9          | 50 09           | CH                                 | 3 02           | d        | (9 2)            | H-19, H-30                      |
| 10         | 58 45           | С                                  |                |          |                  | Н-2β, Н-9, Н-19                 |
| 11         | 120 81          | CH                                 | 5 68           | đd       | (106, 92)        | H-9, H-12                       |
| 12         | 133 33          | CH                                 | 5 50           | d        | (10 6)           | H-11, H-18                      |
| 13         | 55 84           | С                                  |                |          |                  | H-9, H-11, H-17                 |
| 14         | 84 94           | С                                  |                |          |                  | Η-2β, Η-18                      |
| 15         | 166 56          | С                                  |                |          |                  | H-17                            |
| 17         | 77 76           | CH                                 | 5 64           | S        |                  | H-18, H-21, H-22                |
| 18         | 21 59           | CH <sub>3</sub>                    | 0 97           | S        |                  | H-12, H-17                      |
| 19         | 16 94           | CH <sub>3</sub>                    | 1 23           | S        |                  | H-9                             |
|            | 118 57          | C                                  |                |          |                  | H-17, H-21, H-22, H-23          |
|            | 141 57          | CH                                 | 7 78           | qui      | (0.7)            | H-17, H-22, H-23                |
|            | 109 54          | CH                                 | 6 56           | dd       | (1.8, 0.7)       | H-17, H-21, H-23                |
| 23<br>28   | 144 03<br>19 15 | CH                                 | 7 72           | t        | (18)             | H-21                            |
|            | 114 24          | CH <sub>3</sub><br>CH <sub>2</sub> | 1 86<br>5 14 a | s<br>brd | (1.0)            | H-29                            |
| 47         | 114 44          | СП2                                | 5 23 b         | ora<br>s | (1 8)            |                                 |
| 30         | 21 35           | CH <sub>3</sub>                    | 1 65           | S        |                  |                                 |
| 1'         | 78 07           | CH                                 | 4 76           | ď        | (5 9)            | H-2'                            |
| 2'         | 36 01           | CH <sub>2</sub>                    | 2 93 α         |          | ` '              | H-1'                            |
| 2          | 20.01           | Cnz                                |                |          | (18 7, 5 9)      | п-1                             |
| 21         | 150.54          | _                                  | 2 58 β         | d        | (18 7)           | TT 41 TT 41                     |
| 3'         | 173 54          | С                                  |                |          |                  | H-1', H-2'                      |

2212 K. KOIKE et al

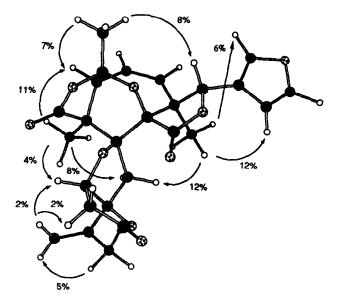



Figure 1 The conformation of brownin A (1) was calculated by molecular mechanics (MM2)<sup>14</sup> and the arrows illustrate the most relevant experimental NOE effects. Enhancements (%) are obtained for those nuclei at the arrow heads on irradiating those at the arrow tails

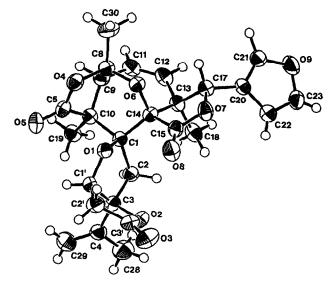



Figure 2 The ORTEP drawing of the molecular structure of brownin A (1)

The second compound, brownin B (2), was obtained as colorless prisms, [ $\alpha$ ]D -145 20 (pyridine) Its molecular formula C<sub>27</sub>H<sub>28</sub>O<sub>10</sub> was determined by positive FAB mass spectrum (m/z 551 [M+K]+ and m/z 513 [M+H]+) and HRMS of its pseudo molecular ion at m/z 513 1768 ([M+H]+,  $\Delta$  +1.6 mmu of calcd) The IR spectrum showed the presence of ketone, lactone and olefinic functions. The <sup>1</sup>H and <sup>13</sup>C NMR spectra of 2 were similar to those of brownin A (1), except that the singlet signal at  $\delta$  5.64 due to the methine proton at H-17 was absent. The presence of a new methoxycarbonyl group ( $\delta$ H 3 58 (3H, s),  $\delta$ C 51 45 and 168 48) and ketone ( $\delta$ C 194.85) due to cleavage of  $\gamma$ -lactone with loss of H-17 was observed. The remaining NMR assignments for 2, shown in Table 2, were based on <sup>1</sup>H-<sup>1</sup>H COSY, HMQC, HMBC and phase-sensitive NOESY spectra. The stereochemistry of 2 was deduced from NOESY results to be the same that of brownin A (1). Thus, the structure of brownin B is 2 or its antipode

To our knowledge this is the first report on the isolation of a new class of highly rearranged limonoids

Table 2 13C and 1H Chemical Shift Assignments and 1H-NOEs of Brownin B (2) in Dimethylsulfoxide-d<sub>6</sub> at 350 K

| Assignment       | $\delta_{\mathrm{C}}$ | $\delta_{\mathrm{H}}$ | mult     | (J, Hz)     | NOEs in NOESY               |  |  |
|------------------|-----------------------|-----------------------|----------|-------------|-----------------------------|--|--|
| 1                | 88 13                 |                       |          |             |                             |  |  |
| 2                | 39 82                 | 3 34 α                | d        | (15 0)      |                             |  |  |
| _                |                       | 2 67 β                | d        | (15 0)      | H-18                        |  |  |
| 3                | 96 61                 | 207 β                 | u        | (15 0)      | 11-16                       |  |  |
| 3<br>4<br>5<br>8 | 140 49                |                       |          |             |                             |  |  |
| 5                | 173 68                |                       |          |             |                             |  |  |
| 8                | 108 37                |                       |          |             |                             |  |  |
| 9                | 48 97                 | 2 95                  | d        | (9 0)       | H-19, H-30                  |  |  |
| 10               | 56 85                 |                       |          |             |                             |  |  |
| 11               | 121 50                | 5 90                  | dd       | (114, 90)   |                             |  |  |
| 12               | 136 49                | 6 15                  | d        | (114)       | H-18, H-21                  |  |  |
| 13<br>14         | 63 80<br>87 94        |                       |          |             |                             |  |  |
| 15               | 168 48                |                       |          |             |                             |  |  |
| 17               | 194 85                |                       |          |             |                             |  |  |
| 18               | 26 00                 | 1 66                  |          |             | H-2β, H-12, H-19            |  |  |
|                  |                       |                       | S        |             |                             |  |  |
| 19               | 18 30                 | 1 19                  | S        |             | H-2α, H-9, H-18, H-29, H-1' |  |  |
| 20               | 124 82                |                       | _        |             |                             |  |  |
| 21               | 147 57                | 8.46                  | brs      |             | H-12                        |  |  |
| 22               | 110 59                | 6 75                  | d        | (1 4)       |                             |  |  |
| 23<br>28         | 143 53<br>19 32       | 7 72<br>1 87          | t        | (1 4)       | 11.20-                      |  |  |
| 29               | 114 73                | 5 13 a                | s<br>brd | (1 1)       | H-29a<br>H-28               |  |  |
| 2,               | 11175                 | 5 18 b                | S        | (1 1)       | H-19                        |  |  |
| 30               | 22 08                 | 1 27                  | S        |             | H-9                         |  |  |
| 1'               | 78 77                 | 4 76                  | d        | (5 3)       | H-19, H-29b                 |  |  |
| 2'               | 36 09                 | 297α                  | dd       | (18 7, 5 3) | H-19                        |  |  |
|                  |                       | 2 32 β                | d        | (18 7)      |                             |  |  |
| 3'               | 173 11                | 2 22 μ                | u        | (10 1)      |                             |  |  |
| OMe              | 51 45                 | 3 58                  | S        |             |                             |  |  |

2214 K Koike et al

## EXPERIMENTAL SECTION

General procedures Melting points were determined on a Yanagimoto micromelting point hotstage type apparatus and are uncorrected. IR spectra were recorded as KBr pellets on a JASCO 7300 FTIR
spectrophotometer UV spectra were recorded on a Hitachi 340 spectrometer in MeOH Low-resolution
EIMS were measured on a JEOL D-300 mass spectrometer. HRMS and FABMS were measured on a
JEOL D-JEOL DX-303 mass spectrometer Optical rotations were determined on a JASCO DIP-4 digital
polarimeter <sup>1</sup>H, <sup>13</sup>C and two dimensional NMR spectra were recorded on a JEOL EX-400 spectrometer,
using tetramethylsilane as an internal standard.

Isolation of Brownins A (1) and B (2) Dried aerial bark (3 0 kg) of Harrisonia brownii collected in Indonesia, May, 1990, was extracted with CHCl<sub>3</sub> (45 L) and MeOH (45 L) The CHCl<sub>3</sub> extract was concentrated under reduced pressure to give a residue (165 g) which was chromatographed on silica gel (2 kg) with CHCl<sub>3</sub> as eluent containing increasing amounts of MeOH (1, 5, 10, 20, 50 and 100%) Fractions (1-107) (500 ml each) were collected and the chromatographic separation was monitored by TLC (Merck silica gel 60 F<sub>256</sub>) The fractions (28-54) obtained by elution with CHCl<sub>3</sub> MeOH (19 1 and 9 1) afforded a crude extract containing a mixture of limonoids (58 g), which was repeatedly chromatographed on silica gel (BW-820 MH, Fuji Davison) and then recrystallized from MeOH to gave brownin A (1, 260 mg) and brownin B (2, 76 mg)

**Brownin A (1)** Colorless prisms (MeOH), mp >300°, [ $\alpha$ ]<sup>26</sup>D -75 0° (c, 10, pyridine) UV  $\lambda$ max nm (log  $\epsilon$ ) 242 (sh, 2.84), 250 (2.96), 255 (2.99) 260 (sh, 2.81) IR  $\nu$ max cm<sup>-1</sup> 1785 (br), 1650, 1505, 1390, 1200, 1150, 1060, 1020, 900 EIMS m/z (relative intensity) 482 (M<sup>+</sup>, 1), 386 (9), 358 (27), 330 (49), 316 (12), 287 (85), 265 (35), 247 (15), 221 (31), 201 (26), 43 (100) HRMS, m/z 482 1556 [M]<sup>+</sup> (C<sub>26</sub>H<sub>26</sub>O<sub>9</sub>,  $\Delta$  -1 3 mmu of calcd)

Brownin B (2) Colorless prisms (MeOH), mp 287-288°, [  $\alpha$  ]<sup>26</sup><sub>D</sub> -145 2° (c, 1 0, pyridine) UV λmax nm (log ε) 256 (3 69) IR νmax cm<sup>-1</sup> 1790 (br), 1760, 1730, 1660, 1560, 1510, 1270, 1215, 1180, 1160, 1060, 1040, 920 Positive FABMS m/z 551 [M+K]+, 513 [M+H]+ EIMS m/z (relative intensity) 513 ([M+1]+, 2), 481 (8), 453 (15), 358 (17), 326 (89), 315 (51),283 (44), 253 (10), 221 (25), 95 (100), 43 (75) HRMS, m/z 513 1768 [M+H]+ (C<sub>27</sub>H<sub>29</sub>O<sub>10</sub>,  $\Delta$  +16 mmu of calcd)

Crystal data for 1. (Crystallized from methanol/water)  $C_{26}H_{26}O_{9}$ , M=482 49, colorless prisms, orthorhombic (no 19), a=10 404(2) Å, b=24 480(1) Å, c=8 8470(9) Å, space group  $P2_1P2_1P2_1$ , Z=4,  $D_c=1$  422 g/cm<sup>3</sup>, Cu radiation,  $\lambda=1$  54178 Å,  $\mu(Cu-K\alpha)=8$  60 cm<sup>-1</sup>, F(000)=1016 00 Data were measured on a Rigaku AFC7R diffractometer with Cu-K $\alpha$  radiation (graphite monochrometer) using  $\omega$ -20 scans A total of 1962 independent reflections (20<120 1°) were measured, of which 1810 had (I>3 00 $\sigma$ (I)), and were considered to be observed All calculations were performed using the TEXSAN

system  $^{15}$  The structure was solved by direct method with SHELXS- $^{8616}$  and refined by using full-matrix least-squeares technique to R=0.027 (Rw=0.035). The maximum and minimum residual electron densities in peaks on the final difference Fourier map corresponded to 0.16 and -0.15 e<sup>-</sup>/Å<sup>3</sup>, respectively. Atomic coordinates, anisotropic and isotropic thermal parameters, bond angles, bond lengths and torsion angles have been deposited at the Cambridge Crystallographic Data Centre  $^{17}$ 

Final Positional Parameters (x10<sup>4</sup>) and Equivalent Isotropic Thermal Parameters with Estimated Standard Deviations in Parentheses for Brownin A (1)

| Atom           | х    |            | у            |      | z     |     | $B_{eq}(A^2)$ |     |
|----------------|------|------------|--------------|------|-------|-----|---------------|-----|
| C(1)           | 4366 | (2)        | 8743         | (9)  | 1252  | (3) | 2 51          | (5) |
| C(2)           | 5840 | (2)<br>(2) | 8809         | (1)  | 1121  | (3) | 3 04          | (5) |
| C(3)           | 6075 | (2)        | 9174         | (10) | -253  | (3) | 2 91          | (5) |
| C(4)           | 7110 | (3)        | 9597         | (1)  | -61   | (3) | 3 43          | (6  |
| C(5)           | 2566 | (2)        | 9370         | (10) | 1690  | (3) | 3 02          | (5) |
| C(8)           | 1890 | (2)        | 8523         | (9)  | 2395  | (3) | 3 08          | (5) |
| C(9)           | 2813 | (2)        | 873 <i>5</i> | (10) | 3585  | (3) | 3 00          | (5  |
| C(10)          | 3671 | (2)<br>(3) | 9092         | (9)  | 2535  | (3) | 2 72          | (5) |
| C(11)          | 3333 | (3)        | 8297         | (1)  | 4611  | (3) | 3 44          | (6) |
| C(12)          | 3961 | (3)        | 7862         | (1)  | 4176  | (3) | 3 50          | (6) |
| C(13)          | 4454 | (3)        | 7757         | (10) | 2602  | (3) | 2 94          | (5) |
| C(14)          | 3899 | (2)<br>(2) | 8145         | (10) | 1365  | (3) | 2 61          | (5) |
| C(15)          | 4116 | (2)        | 7792         | (1)  | -68   | (3) | 2 94          | (6) |
| C(17)          | 3932 | (3)        | 7203         | (10) | 1973  | (3) | 3 03          | (5) |
| C(18)          | 5919 | (3)        | 7729         | (1)  | 2729  | (3) | 3 63          | (6) |
| C(19)          | 4501 | (3)        | 9502         | (10) | 3369  | (3) | 3 35          | (6) |
| C(20)          | 4624 | (2)        | 6693         | (10) | 2428  | (3) | 3 01          | (5) |
| C(21)<br>C(22) | 4219 | (3)        | 6340         | (1)  | 3470  | (3) | 3 68          | (6) |
| C(22)          | 5799 | (3)        | 6476         | (1)  | 1869  | (3) | 3 77          | (6) |
| C(23)          | 6016 | (3)        | 6013         | (1)  | 2600  | (4) | 4 03          | (6) |
| C(28)          | 8392 | (3)        | 9386         | (1)  | 382   | (4) | 5 13          | (8) |
| C(29)          | 6901 | (3)        | 10118        | (1)  | -301  | (5) | 5 59          | (8) |
| C(30)          | 635  | (3)        | 8271         | (1)  | 2903  | (4) | 4 54          | (7) |
| C(1')          | 4738 | (2)        | 9348         | (10) | -770  | (3) | 2 90          | (5) |
| C(2')          | 4765 | (3)        | 9296         | (1)  | -2469 | (3) | 3 80          | (6) |
| C(3')          | 5842 | (3)        | 8906         | (1)  | -2766 | (3) | 3 47          | (6) |
| O(1)           | 3890 | (2)        | 8941         | (6)  | -177  | (2) | 2 70          | (3) |
| O(2)           | 6519 | (2)        | 8815         | (7)  | -1486 | (2) | 3 17          | (4) |
| O(3)           | 6137 | (2)        | 8694         | (9)  | -3939 | (2) | 4 81          | (5) |
| O(4)           | 1582 | (2)        | 9014         | (7)  | 1542  | (2) | 3 38          | (4) |
| O(5)           | 2488 | (2)        | 9835         | (7)  | 1258  | (2) | 3 98          | (4) |
| O(6)           | 2504 | (1)        | 8137         | (6)  | 1438  | (2) | 2 83          | (3) |
| O(7)           | 4050 | (2)        | 7261         | (7)  | 335   | (2) | 3 52          | (4) |
| O(8)           | 4280 | (2)        | 7922         | (7)  | -1350 | (2) | 4 32          | (5) |
| O(9)           | 5056 | (2)        | 5917         | (7)  | 3627  | (3) | 4 58          | (5) |

Acknowledgment: The authors gratefully thank Dr M Shiro (Rigaku Corporation) for X-ray analysis and helpful discussion

2216 K Koike et al

## REFERENCES AND NOTES

- 1. White, T C Tree Flora of Malaya; Longman, 1973, Vol II, pp 349-350
- 2 Ridley, N. H. The Flora of the Malay Peninsula, A. Sher, Amsterdam, 1976, Vol. I, pp360-361.
- 3 Kubo, I, Tanis, S P, Lee, Y-W, Miura, I.; Nakanishi, K Heterocycles, 1976, 5, 485
- 4 Liu, H-W, Kubo, I, Nakanishi, K Heterocycles, 1982, 17, 67
- 5 Okorie, D A Phytochemistry, 1982, 21, 2424
- 6 Chapya, AW Phytochemistry, 1987, 26, 573
- Balde, A. M., Vanhaelen, M., Daloze, D. Phytochemistry, 1988, 27, 942
- 8 Byme, L. T., Tri, M., Phuong, N. M., Sargent, M. V., Skelton, B. W., White, A. H. Aust J. Chem., 1991, 44, 165
- 9 Liu, H-W, Kusumi, T, Nakanishi, K J C S Chem Comm, 1981, 24, 1271
- 10 Meixin, W, Minsheng, Z, Yuanlong, Z Yaoxue Xuebao, 1983, 18, 113
- 11 Meixin, W., Minsheng, Z., Wenzi, L., Yuanlong Z. Yaoxue Xuebao., 1984, 19, 760
- 12 Xincheng, W, Zuohua, P, Xiaocheng, G., Meixin, W, Yuanlong, Z Jiegou Huaxae, 1985, 4, 281
- Balde, A. M., Vanhaelen, M., Ottinger, R. Phytochemistry, 1987, 26, 2415
- 14 Allinger, N L J Am Chem Soc, 1977, 99, 8127
- 15 TEXSAN Crystal structure analysis package, Molecular Structure Corporation (1985 &1992)
- SHELXS86: Sheldrick, G M, Crystallographic Computing 3 (Eds. M Sheldrick, C Kruger and R Goddard) Oxford University Press, 1985, pp 175-189
- Archival X-ray crystallographic data have been deposited and can be ordered from the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, U K (please provide complete reference when ordering)